Pareto Smoothed Importance Sampling∗
نویسندگان
چکیده
Importance weighting is a convenient general way to adjust for draws from the wrong distribution, but the resulting ratio estimate can be noisy when the importance weights have a heavy right tail, as routinely occurs when there are aspects of the target distribution not well captured by the approximating distribution. More stable estimates can be obtained by truncating the importance ratios. Here we present a new method for stabilizing importance weights using a generalized Pareto distribution fit to the upper tail of the distribution of the simulated importance ratios.
منابع مشابه
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Leave-one-out cross-validation (LOO) and the widely applicable information criterion (WAIC) are methods for estimating pointwise out-of-sample prediction accuracy from a fitted Bayesian model using the log-likelihood evaluated at the posterior simulations of the parameter values. LOO and WAIC have various advantages over simpler estimates of predictive error such as AIC and DIC but are less use...
متن کاملUsing stacking to average Bayesian predictive distributions Using stacking to average Bayesian predictive distributions
Abstract The widely recommended procedure of Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions, extending the utility function to any proper scoring rule, using Pareto smooth...
متن کاملUsing stacking to average Bayesian predictive distributions
Abstract. Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficien...
متن کاملThe Smoothed Number of Pareto-Optimal Solutions in Non-integer Bicriteria Optimization
Pareto-optimal solutions are one of the most important and well-studied solution concepts in multi-objective optimization. Often the enumeration of all Pareto-optimal solutions is used to filter out unreasonable trade-offs between different criteria. While in practice, often only few Pareto-optimal solutions are observed, for almost every problem with at least two objectives there exist instanc...
متن کاملManifold-based multi-objective policy search with sample reuse
Many real-world applications are characterized by multiple conflicting objectives. In such problems optimality is replaced by Pareto optimality and the goal is to find the Pareto frontier, a set of solutions representing different compromises among the objectives. Despite recent advances in multi-objective optimization, achieving an accurate representation of the Pareto frontier is still an imp...
متن کامل